你好,我是宫文学。
今天这一讲,我继续带你来总结前面解析的7种真实的编译器中,中端部分的特征和编译技术。
在课程的第1讲,我也给你总结过编译器的中端的主要作用,就是实现各种优化。并且在中端实现的优化,基本上都是机器无关的。而优化是在IR上进行的。
所以,今天这一讲,我们主要来总结以下这两方面的问题:
通过今天的总结,你能够对中端的两大主题IR和优化,形成更加深入的理解,从而更有利于你熟练运用编译技术。
好了,我们先来把前面学到的IR的相关知识,来系统地梳理和印证一下吧。
通过对前面几个真实编译器的分析,我们会发现IR方面的几个重要特征:SSA已经成为主流;Sea of Nodes展现出令人瞩目的优势;另外,一个编译器中的IR,既要能表示抽象度比较高的操作,也要能表示抽象度比较低的、接近机器码的操作。
通过学习前面的课程,我们会发现,符合SSA格式的IR成为了主流。Java和JavaScript的Sea of Nodes,是符合SSA的;Golang是符合SSA的;Julia自己的IR,虽然最早不是SSA格式的,但后来也改成了SSA;而Julia所采用的LLVM工具,其IR也是SSA格式的。
SSA意味着什么呢?源代码中的一个变量,会变成多个版本,每次赋值都形成一个新版本。在SSA中,它们都叫做一个值(Value),对变量的赋值就是对值的定义(def)。这个值定义出来之后,就可以在定义其他值的时候被使用(use),因此就形成了清晰的“使用-定义”链(use-def)。
这种清晰的use-def链会给优化算法提供很多的便利:
针对最后一种情况,也就是公共子表达式消除,我再给你展开讲解一下,让你充分体会SSA和传统IR的区别。
我们知道,基于传统的IR,要做公共子表达式消除,就需要专门做一个“可用表达式”的分析。像下图展示的那样,每扫描一遍代码,就要往一个集合里增加一个可用的表达式。
为什么叫做可用表达式呢?因为变量可能被二次赋值,就像图中的变量c那样。在二次赋值以后,之前的表达式“c:=a+b”就不可用了。
图1:变量c二次赋值后,各个位置的可用表达式集合
在后面,当替换公共子表达式的时候,我们可以把“e:=a+b”替换成“e:=d”,这样就可以少做一次计算,实现了优化的目标。
而如果采用SSA格式,上面这几行语句就可以改写为下图中的样子:
图2:用SSA格式的IR改写的程序
可以看到,原来的变量c被替换成了c1和c2两个变量,而c1、d和e右边的表达式都是一样的,并且它们的值不会再发生变化。所以,我们可以马上消除掉这些公共子表达式,从而减少了两次计算,这就比采用SSA之前的优化效果更好了。最重要的是,整个过程根本不需要做数据流分析。
图3:把公共子表达式a+b消除掉
好,在掌握了SSA格式的特点以后,我们还可以注意到,Java和JavaScript的两大编译器,在做优化时,竟然都不约而同地用到了Sea Of Nodes这种数据结构。它看起来非常重要,所以,我们再接着来总结一下,符合SSA格式的Sea of Nodes,都有什么特点。
其实在解析Graal编译器的时候,我就提到过,Sea of Nodes的特点是把数据流图和控制流图合二为一,从而更容易实现全局优化。因为采用这种IR,代码并没有一开始就被限制在一个个的基本块中。直到最后生成LIR的环节,才会把图节点Schedule到各个基本块。作为对比,采用基于CFG的IR,优化算法需要让代码在基本块内部和基本块之间移动,处理起来会比较复杂。
在这里,我再带你把生成IR的过程推导一遍,你能从中体会到生成Sea of Nodes的思路,并且还会有一些惊喜的发现。
示例函数或方法是下面这样:
int foo(int b){
a = b;
c = a + b;
c = b;
d = a + b;
e = a + b;
return e;
}
那么,为它生成IR图的过程是怎么样的呢?
第1步,对参数b生成一个节点。
第2步,对于a=b,这里并没有形成一个新的值,所以在后面在引用a和b的时候,都指向同一个节点就好。
第3步,对于c=a+b,生成一个加法节点,从而形成一个新的值。
第4步,对于c=b,实际上还是直接用b这个节点就行了,并不需要生成新节点。
第5步和第6步,对于d=a+b和e=a+b,你会发现它们都没有生成新的值,还是跟c1用同一个节点表示就行。
第7步,对于return语句,这时候生成一个return节点,返回上面形成的加法节点即可。
从这个例子中你发现了什么呢?原来,采用Sea of Nodes作为IR,在生成图的过程中,顺带就可以完成很多优化了,比如可以消除公共子表达式。
所以我希望,通过上面的例子,你能进一步抓住Sea of Nodes这种数据结构的特点。
但是,Sea of Nodes只有优点,没有缺点吗?也不是的。比如:
总体来说,Sea of Nodes的优点和缺点都来自图这种数据结构。一方面,图的结构简化了程序的表达;另一方面,要想对图做某些操作,也会更困难一些。
对于IR来说,我们需要总结的另一个特点,就是编译器需要从高到低的多个层次的IR。在编译的过程中,高层次的IR会被不断地Lower到低层次的IR,直到最后翻译成目标代码。通过这样层层Lower的过程,程序的语义就从高级语言,一步步变到了汇编语言,中间跨越了巨大的鸿沟:
在采用Sea of Nodes数据结构的时候,编译器会把图中的节点,从代表高层次语义的节点,逐步替换到代表低层次语义的节点。
以TurboFan为例,它的IR就包含了几种不同层次的节点:
伴随着编译的进程,我们有时还要进行IR的转换。比如GraalVM,会从HIR转换到LIR;而Julia的编译器则从自己的IR,转换成LLVM的IR;另外,在LLVM的处理过程中,其IR的内部数据结构也进行了切换。一开始使用的是便于做机器无关的优化的结构,之后转换成适合生成机器码的结构。
好,总结完了IR,我们再来看看编译器对IR的处理,比如各种分析和优化算法。
编译器基于IR,主要做了三种类型的处理。第一种处理,就是我们前面说的层层地做Lower。第二种处理,就是对IR做分析,比如数据流分析。第三种处理,就是实现各种优化算法。编译器的优化往往是以分析为基础。比如,活跃性分析是死代码消除的基础。
前面我也说过,编译器在中端所做的优化,基本上都是机器无关的优化。那么在考察了7种编译器以后,我们来总结一下这些编译器做优化的特点。
第一,有些基本的优化,是每个编译器都会去实现的。
比如说,我们见过的常数折叠、代数简化、公共子表达式消除等。这些优化还可能发生在多个阶段,比如从比较早期的语义分析阶段,到比较晚期的基于目标代码的窥孔优化,都使用了这些优化算法。
第二,对于解释执行的语言,其编译器能做的优化是有限的。
前面我们见到了代码在JVM的解释器、Python的解释器、V8的解释器中运行的情况,现在我们来总结一下它们的运行时的特点。
Python对代码所做的优化非常有限,在解释器中执行的性能也很低。最重要的原因,是所有的类型检查都是在运行期进行的,并且会根据不同的类型选择执行不同的功能。另外,Python所有的对象都是在堆里申请内存的,没有充分利用栈来做基础数据类型的运算,这也导致了它的性能损耗。
JVM解释执行的性能要高一些,因为Java编译器已经做了类型检查,并针对不同数据类型生成了不同的指令。但它只做了一些简单的优化,一些无用的代码并没有被消除掉,对Java程序性能影响很大的内联优化和逃逸分析也都没有做。它基于栈的运行机制,也没有充分发挥寄存器的硬件能力。
V8的Ignition解释器在利用寄存器方面要比JVM的解释器有优势。不过,它的动态类型拖了后腿,这跟Python是一样的。
第三,对于动态类型的语言,优化编译的首要任务是做类型推断。
以V8的TurboFan为例,它对类型信息做不同的推断的时候,优化效果是不同的。如果你一开始运行程序,就逼着TurboFan马上做编译,那么TurboFan其实并不知道各个变量的类型信息,因此只能生成比较保守的代码,它仍然是在运行时进行类型检查,并执行不同的逻辑。
而一旦通过运行积累了一定的统计数据,TurboFan就可以大胆地做出类型的推断,从而生成针对某种类型的优化代码。不过,它也一定要为自己可能产生的推理错误做好准备,在必要的时候执行逆优化功能。
Julia也是动态类型的语言,但它采取了另一个编译策略。它会为一个函数不同的参数类型组合,编译生成对应的机器码。在运行时,根据不同的函数参数,分派到不同的函数版本上去执行,从而获得高性能。
第四,JIT编译器可以充分利用推理性的优化机制,这样既节省了编译时间,又有可能带来比AOT更好的优化效果。
第五,对于面向对象的语言,内联优化和逃逸分析非常重要。
在分析Graal编译器和V8的TurboFan编译器的过程中,我都特别强调了内联优化和逃逸分析的作用。内联优化不仅能减少对若干短方法调用的开销,还能导致进一步的优化;而逃逸分析能让很多对象在栈上申请内存,并实现标量替换、锁消除等优化,从而获得极大的性能提升。
第六,对于静态类型的语言,不同的编译器的优化程度也是不同的。
很多工程师经常会争论哪个语言的性能更高。不过在学了编译原理之后,其实可以发现这根本不用争论。你可以设计一些示例程序,测试不同的编译器优化后生成的汇编代码,从而自己得出结论。
现在,我用一个示例程序,来带你测试一下Graal、Go和Clang三个编译器处理数组加法的效率,你可以借此了解一下它们各自的优化力度,特别是看看它们有没有自动向量化的支持,并进一步了解不同语言的运行机制。
首先来看看Java,示例代码在SIMD.java中。其中的add方法,是把一个数组的所有值汇总。
private static int add(int a[]){
int sum = 0;
for (int i=0; i<a.length; i++){
sum = sum + a[i];
}
return sum;
}
我们还是用Graal做即时编译,并打印出生成的汇编代码。这里我截取了其中的主要部分,给你做了分析:
分析这段汇编代码,你能得到下面的信息:
我们再来看一下Go语言的优化效果,示例代码在SIMD.go中。
package main
func add(a []int) int {
sum := 0;
for i:=0; i<len(a); i++{
sum = sum + a[i]
}
return sum;
}
我们生成Go语言特有的伪汇编以后,是下面这个样子:
我们拿它跟Graal生成的汇编代码做比较,会发现其中最重要的差别,是Go的编译器消除了下标检查,这是一个挺大的进步,能够提升不少的性能。不过,你也可以测试一下,当代码中的“len(a)”替换成随意的一个整数的时候,Go的编译器会生成什么代码。它仍然会去做下标检查,并在下标越界的时候报错。
不过,令人遗憾的是,Go语言的编译器仍然没有自动生成向量化的代码。
最后,我们来看一下Clang是如何编译同样功能的一个C语言的程序的(SIMD.c)。
int add(int a[], int length){
int sum = 0;
for (int i=0; i<length; i++){
sum = sum + a[i];
}
return sum;
}
编译生成的汇编代码在SIMD.s中。我截取了其中的骨干部分:
你已经知道,Clang是用LLVM做后端的。在它生成的汇编代码中,对循环做了三种优化:
通过这样的对比,你会发现LLVM做的优化是最深入的。所以,如果你要做计算密集型的软件,如果能做到像LLVM这样的优化程度,那就比较理想了。
不过,做比较深入的优化也不是没有代价的,那就是编译时间会更长。而Go语言的编译器,在设计之初,就把编译速度当成了一个重要的目标,因此它没有去实现自动向量化的功能也是可以理解的。
如果你要用Go语言开发软件,又需要做密集的计算,那么你有两个选择。一是用Go语言提供的内置函数(intrincics)去实现计算功能,这些内置函数是直接用汇编语言实现的。二是Go语言也提供了一个基于LLVM的编译器,你可以用这个编译器来获得更好的优化效果。
这一讲,我带你全面系统地总结了一下“解析篇”中,各个实际编译器的IR和优化算法。通过这样的总结,你会对如何设计IR、如何做优化,有一个更加清晰的认识。
从IR的角度来看,你一定要采用SSA格式的IR,因为它有显著的优点,没有理由不采用。不过,如果你打算自己编写各种优化算法,也不妨进一步采用Sea of Nodes这样的数据结构,并借鉴Graal和V8的一些算法实现。
不过,自己编写优化算法的工作量毕竟很大。在这种情况下,你可以考虑复用一些后端工具,包括LLVM、GraalVM和GCC。
本讲的思维导图我也放在了下面,供你参考:
今天我带你测试了Graal、Go和Clang三个编译器,在SIMD方面编译结果的差异。那么,你能否测试一下这几个编译器在其他方面的优化表现?比如循环无关代码外提,或者你比较感兴趣的其他优化。欢迎在留言区分享你的测试心得。
如果你还有其他的问题,欢迎在留言区提问,我会逐一解答。最后,感谢你的阅读,如果今天的内容让你有所收获,也欢迎你把它分享给更多的朋友。