05 缓存数据不一致和并发竞争怎么处理?

你好,我是你的缓存老师陈波,欢迎进入第5课时“缓存数据相关的经典问题”。

数据不一致
问题描述

七大缓存经典问题的第四个问题是数据不一致。同一份数据,可能会同时存在 DB 和缓存之中。那就有可能发生,DB 和缓存的数据不一致。如果缓存有多个副本,多个缓存副本里的数据也可能会发生不一致现象。

原因分析

不一致的问题大多跟缓存更新异常有关。比如更新 DB 后,写缓存失败,从而导致缓存中存的是老数据。另外,如果系统采用一致性 Hash 分布,同时采用 rehash 自动漂移策略,在节点多次上下线之后,也会产生脏数据。缓存有多个副本时,更新某个副本失败,也会导致这个副本的数据是老数据。

业务场景

导致数据不一致的场景也不少。如下图所示,在缓存机器的带宽被打满,或者机房网络出现波动时,缓存更新失败,新数据没有写入缓存,就会导致缓存和 DB 的数据不一致。缓存 rehash 时,某个缓存机器反复异常,多次上下线,更新请求多次 rehash。这样,一份数据存在多个节点,且每次 rehash 只更新某个节点,导致一些缓存节点产生脏数据。

img

解决方案

要尽量保证数据的一致性。这里也给出了 3 个方案,可以根据实际情况进行选择。

img

数据并发竞争
问题描述

第五个经典问题是数据并发竞争。互联网系统,线上流量较大,缓存访问中很容易出现数据并发竞争的现象。数据并发竞争,是指在高并发访问场景,一旦缓存访问没有找到数据,大量请求就会并发查询 DB,导致 DB 压力大增的现象。

数据并发竞争,主要是由于多个进程/线程中,有大量并发请求获取相同的数据,而这个数据 key 因为正好过期、被剔除等各种原因在缓存中不存在,这些进程/线程之间没有任何协调,然后一起并发查询 DB,请求那个相同的 key,最终导致 DB 压力大增,如下图。

img

业务场景

数据并发竞争在大流量系统也比较常见,比如车票系统,如果某个火车车次缓存信息过期,但仍然有大量用户在查询该车次信息。又比如微博系统中,如果某条微博正好被缓存淘汰,但这条微博仍然有大量的转发、评论、赞。上述情况都会造成该车次信息、该条微博存在并发竞争读取的问题。

解决方案

要解决并发竞争,有 2 种方案。

img

img