25 消费者组重平衡全流程解析

你好,我是胡夕。今天我要和你分享的主题是:消费者组重平衡全流程解析。

之前我们聊到过消费者组的重平衡流程,它的作用是让组内所有的消费者实例就消费哪些主题分区达成一致。重平衡需要借助Kafka Broker端的Coordinator组件,在Coordinator的帮助下完成整个消费者组的分区重分配。今天我们就来详细说说这个流程。

先提示一下,我会以Kafka 2.3版本的源代码开启今天的讲述。在分享的过程中,对于旧版本的设计差异,我也会显式地说明。这样,即使你依然在使用比较旧的版本也不打紧,毕竟设计原理大体上是没有变化的。

触发与通知

我们先来简单回顾一下重平衡的3个触发条件:

  1. 组成员数量发生变化。
  2. 订阅主题数量发生变化。
  3. 订阅主题的分区数发生变化。

就我个人的经验来看,在实际生产环境中,因命中第1个条件而引发的重平衡是最常见的。另外,消费者组中的消费者实例依次启动也属于第1种情况,也就是说,每次消费者组启动时,必然会触发重平衡过程。

这部分内容我在专栏第15讲中已经详细介绍过了,就不再赘述了。如果你不记得的话,可以先去复习一下。

今天,我真正想引出的是另一个话题:重平衡过程是如何通知到其他消费者实例的?答案就是,靠消费者端的心跳线程(Heartbeat Thread)

Kafka Java消费者需要定期地发送心跳请求(Heartbeat Request)到Broker端的协调者,以表明它还存活着。在Kafka 0.10.1.0版本之前,发送心跳请求是在消费者主线程完成的,也就是你写代码调用KafkaConsumer.poll方法的那个线程。

这样做有诸多弊病,最大的问题在于,消息处理逻辑也是在这个线程中完成的。因此,一旦消息处理消耗了过长的时间,心跳请求将无法及时发到协调者那里,导致协调者“错误地”认为该消费者已“死”。自0.10.1.0版本开始,社区引入了一个单独的心跳线程来专门执行心跳请求发送,避免了这个问题。

但这和重平衡又有什么关系呢?其实,重平衡的通知机制正是通过心跳线程来完成的。当协调者决定开启新一轮重平衡后,它会将“REBALANCE_IN_PROGRESS”封装进心跳请求的响应中,发还给消费者实例。当消费者实例发现心跳响应中包含了“REBALANCE_IN_PROGRESS”,就能立马知道重平衡又开始了,这就是重平衡的通知机制。

对了,很多人还搞不清楚消费者端参数heartbeat.interval.ms的真实用途,我来解释一下。从字面上看,它就是设置了心跳的间隔时间,但这个参数的真正作用是控制重平衡通知的频率。如果你想要消费者实例更迅速地得到通知,那么就可以给这个参数设置一个非常小的值,这样消费者就能更快地感知到重平衡已经开启了。

消费者组状态机

重平衡一旦开启,Broker端的协调者组件就要开始忙了,主要涉及到控制消费者组的状态流转。当前,Kafka设计了一套消费者组状态机(State Machine),来帮助协调者完成整个重平衡流程。严格来说,这套状态机属于非常底层的设计,Kafka官网上压根就没有提到过,但你最好还是了解一下,因为它能够帮助你搞懂消费者组的设计原理,比如消费者组的过期位移(Expired Offsets)删除等

目前,Kafka为消费者组定义了5种状态,它们分别是:Empty、Dead、PreparingRebalance、CompletingRebalance和Stable。那么,这5种状态的含义是什么呢?我们一起来看看下面这张表格。

了解了这些状态的含义之后,我们来看一张图片,它展示了状态机的各个状态流转。

我来解释一下消费者组启动时的状态流转过程。一个消费者组最开始是Empty状态,当重平衡过程开启后,它会被置于PreparingRebalance状态等待成员加入,之后变更到CompletingRebalance状态等待分配方案,最后流转到Stable状态完成重平衡。

当有新成员加入或已有成员退出时,消费者组的状态从Stable直接跳到PreparingRebalance状态,此时,所有现存成员就必须重新申请加入组。当所有成员都退出组后,消费者组状态变更为Empty。Kafka定期自动删除过期位移的条件就是,组要处于Empty状态。因此,如果你的消费者组停掉了很长时间(超过7天),那么Kafka很可能就把该组的位移数据删除了。我相信,你在Kafka的日志中一定经常看到下面这个输出:

Removed ✘✘✘ expired offsets in ✘✘✘ milliseconds.

这就是Kafka在尝试定期删除过期位移。现在你知道了,只有Empty状态下的组,才会执行过期位移删除的操作。

消费者端重平衡流程

有了上面的内容作铺垫,我们就可以开始介绍重平衡流程了。重平衡的完整流程需要消费者端和协调者组件共同参与才能完成。我们先从消费者的视角来审视一下重平衡的流程。

在消费者端,重平衡分为两个步骤:分别是加入组和等待领导者消费者(Leader Consumer)分配方案。这两个步骤分别对应两类特定的请求:JoinGroup请求和SyncGroup请求

当组内成员加入组时,它会向协调者发送JoinGroup请求。在该请求中,每个成员都要将自己订阅的主题上报,这样协调者就能收集到所有成员的订阅信息。一旦收集了全部成员的JoinGroup请求后,协调者会从这些成员中选择一个担任这个消费者组的领导者。

通常情况下,第一个发送JoinGroup请求的成员自动成为领导者。你一定要注意区分这里的领导者和之前我们介绍的领导者副本,它们不是一个概念。这里的领导者是具体的消费者实例,它既不是副本,也不是协调者。领导者消费者的任务是收集所有成员的订阅信息,然后根据这些信息,制定具体的分区消费分配方案。

选出领导者之后,协调者会把消费者组订阅信息封装进JoinGroup请求的响应体中,然后发给领导者,由领导者统一做出分配方案后,进入到下一步:发送SyncGroup请求。

在这一步中,领导者向协调者发送SyncGroup请求,将刚刚做出的分配方案发给协调者。值得注意的是,其他成员也会向协调者发送SyncGroup请求,只不过请求体中并没有实际的内容。这一步的主要目的是让协调者接收分配方案,然后统一以SyncGroup响应的方式分发给所有成员,这样组内所有成员就都知道自己该消费哪些分区了。

接下来,我用一张图来形象地说明一下JoinGroup请求的处理过程。

就像前面说的,JoinGroup请求的主要作用是将组成员订阅信息发送给领导者消费者,待领导者制定好分配方案后,重平衡流程进入到SyncGroup请求阶段。

下面这张图描述的是SyncGroup请求的处理流程。

SyncGroup请求的主要目的,就是让协调者把领导者制定的分配方案下发给各个组内成员。当所有成员都成功接收到分配方案后,消费者组进入到Stable状态,即开始正常的消费工作。

讲完这里,消费者端的重平衡流程我已经介绍完了。接下来,我们从协调者端来看一下重平衡是怎么执行的。

Broker端重平衡场景剖析

要剖析协调者端处理重平衡的全流程,我们必须要分几个场景来讨论。这几个场景分别是新成员加入组、组成员主动离组、组成员崩溃离组、组成员提交位移。接下来,我们一个一个来讨论。

场景一:新成员入组。

新成员入组是指组处于Stable状态后,有新成员加入。如果是全新启动一个消费者组,Kafka是有一些自己的小优化的,流程上会有些许的不同。我们这里讨论的是,组稳定了之后有新成员加入的情形。

当协调者收到新的JoinGroup请求后,它会通过心跳请求响应的方式通知组内现有的所有成员,强制它们开启新一轮的重平衡。具体的过程和之前的客户端重平衡流程是一样的。现在,我用一张时序图来说明协调者一端是如何处理新成员入组的。

场景二:组成员主动离组。

何谓主动离组?就是指消费者实例所在线程或进程调用close()方法主动通知协调者它要退出。这个场景就涉及到了第三类请求:LeaveGroup请求。协调者收到LeaveGroup请求后,依然会以心跳响应的方式通知其他成员,因此我就不再赘述了,还是直接用一张图来说明。

场景三:组成员崩溃离组。

崩溃离组是指消费者实例出现严重故障,突然宕机导致的离组。它和主动离组是有区别的,因为后者是主动发起的离组,协调者能马上感知并处理。但崩溃离组是被动的,协调者通常需要等待一段时间才能感知到,这段时间一般是由消费者端参数session.timeout.ms控制的。也就是说,Kafka一般不会超过session.timeout.ms就能感知到这个崩溃。当然,后面处理崩溃离组的流程与之前是一样的,我们来看看下面这张图。

场景四:重平衡时协调者对组内成员提交位移的处理。

正常情况下,每个组内成员都会定期汇报位移给协调者。当重平衡开启时,协调者会给予成员一段缓冲时间,要求每个成员必须在这段时间内快速地上报自己的位移信息,然后再开启正常的JoinGroup/SyncGroup请求发送。还是老办法,我们使用一张图来说明。

小结

好了,消费者重平衡流程我已经全部讲完了。虽然全程我都是拿两个成员来举例子,但你可以很容易地扩展到多个成员的消费者组,毕竟它们的原理是相同的。我希望你能多看几遍今天的内容,彻底掌握Kafka的消费者重平衡流程。社区正在对目前的重平衡流程做较大程度的改动,如果你不了解这些基础的设计原理,后面想深入学习这部分内容的话,会十分困难。

开放讨论

在整个重平衡过程中,组内所有消费者实例都会暂停消费,用JVM GC的术语来说就是,重平衡过程是一个stop the world操作。请思考一下,针对这个问题,我们该如何改进这个过程?我们是否能允许部分消费者在重平衡过程中继续消费,以提升消费者端的可用性以及吞吐量?

欢迎写下你的思考和答案,我们一起讨论。如果你觉得有所收获,也欢迎把文章分享给你的朋友。