14 分区表:哪些场景我不建议用分区表?

前面几讲,我们通过索引的原理,索引覆盖的使用,结合复杂 SQL 的调优,学习了索引设计的各个方面。那么在模块二的最后一讲,我想来谈谈分区表的设计,用来对数据进行物理分区。

分区表即涉及表结构设计,也涉及了索引的设计,以及一个数据库上的哲学问题:是否要使用分区表?

接下来,我们就来学习分区表的相关知识(分区表的使用、注意事项、误区)以及在业务上的设计。

分区表的使用

简单来说,分区表就是把物理表结构相同的几张表,通过一定算法,组成一张逻辑大表。这种算法叫“分区函数”,当前 MySQL 数据库支持的分区函数类型有 RANGE、LIST、HASH、KEY、COLUMNS。

无论选择哪种分区函数,都要指定相关列成为分区算法的输入条件,这些列就叫“分区列”。另外,在 MySQL 分区表中,主键也必须是分区列的一部分,不然创建分区表时会失败,比如:

CREATE TABLE t (

    a INT,

    b INT,

    c DATETIME(6),

    d VARCHAR(32),

    e INT,

    PRIMARY KEY (a,b)

)

partition by range columns(c) (

    PARTITION p0000 VALUES LESS THAN ('2019-01-01'),

    PARTITION p2019 VALUES LESS THAN ('2020-01-01'),

    PARTITION p2020 VALUES LESS THAN ('2021-01-01'),

    PARTITION p9999 VALUES LESS THAN (MAXVALUE)

);

ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function (prefixed columns are not considered).

上面创建了表 t,主键是复合索引,由列 a、b 组成。表 t 创建分区表的意图是根据列 c(时间列)拆分数据,把不同时间数据存放到不同分区中。

而我们可以从错误的提示中看到:分区表的主键一定要包含分区函数的列。所以,要创建基于列c 的数据分片的分区表,主键必须包含列 c,比如下面的建表语句:

CREATE TABLE t (

    a INT,

    b INT,

    c DATETIME,

    d VARCHAR(32),

    e INT,

    PRIMARY KEY (a,b,c),

    KEY idx_e (e)

)

partition by range columns(c) (

    PARTITION p0000 VALUES LESS THAN ('2019-01-01'),

    PARTITION p2019 VALUES LESS THAN ('2020-01-01'),

    PARTITION p2020 VALUES LESS THAN ('2021-01-01'),

    PARTITION p9999 VALUES LESS THAN (MAXVALUE)

);

创建完表后,在物理存储上会看到四个分区所对应 ibd 文件,也就是把数据根据时间列 c 存储到对应的 4 个文件中:

t#p#p0000.ibd  t#p#p2019.ibd  t#p#p2020.ibd  t#p#p9999.ibd

所以,你要理解的是:MySQL 中的分区表是把一张大表拆成了多张表,每张表有自己的索引,从逻辑上看是一张表,但物理上存储在不同文件中。

另外,对于唯一索引的实现,可能和你原本的理解有些不同,我们接着往下看。

分区表注意事项:唯一索引

在 MySQL 数据库中,分区表的索引都是局部,而非全局。也就是说,索引在每个分区文件中都是独立的,所以分区表上的唯一索引必须包含分区列信息,否则创建会报错,比如:

ALTER TABLE t ADD UNIQUE KEY idx_d(d);

ERROR 1503 (HY000): A UNIQUE INDEX must include all columns in the table's partitioning function (prefixed columns are not considered).

你可以看到错误提示: 唯一索引必须包含分区函数中所有列。而下面的创建才能成功:

ALTER TABLE t ADD UNIQUE KEY idx_d(d,c);

但是,正因为唯一索引包含了分区列,唯一索引也就变成仅在当前分区唯一,而不是全局唯一了。那么对于上面的表 t,插入下面这两条记录都是可以的:

INSERT INTO t VALUES 

(1,1,'2021-01-01','aaa',1),

(1,1,'2020-01-01','aaa',1);

SELECT * FROM t;

+---+---+---------------------+------+------+

| a | b | c                   | d    | e    |

+---+---+---------------------+------+------+

| 1 | 1 | 2020-01-01 00:00:00 |aaa   |    1 |

| 1 | 1 | 2021-01-01 00:00:00 |aaa   |    1 |

+---+---+---------------------+------+------+

你可以看到,列 d 都是字符串‘aaa’,但依然可以插入。这样带来的影响是列 d 并不是唯一的,所以你要由当前分区唯一实现全局唯一。

那如何实现全局唯一索引呢? 和之前表结构设计时一样,唯一索引使用全局唯一的字符串(如类似 UUID 的实现),这样就能避免局部唯一的问题。

分区表的误区:性能提升

很多同学会认为,分区表是把一张大表拆分成了多张小表,所以这样 MySQL 数据库的性能会有大幅提升。这是错误的认识!如果你寄希望于通过分区表提升性能,那么我不建议你使用分区,因为做不到。

分区表技术不是用于提升 MySQL 数据库的性能,而是方便数据的管理

我们再回顾下 08 讲中提及的“B+树高度与数据存储量之间的关系”:

image.png

从表格中可以看到,B+ 树的高度为 4 能存放数十亿的数据,一次查询只需要占用 4 次 I/O,速度非常快。

但是当你使用分区之后,效果就不一样了,比如上面的表 t,我们根据时间拆成每年一张表,这时,虽然 B+ 树的高度从 4 降为了 3,但是这个提升微乎其微。

除此之外,分区表还会引入新的性能问题,比如非分区列的查询。非分区列的查询,即使分区列上已经创建了索引,但因为索引是每个分区文件对应的本地索引,所以要查询每个分区。

接着,我们看一下这条 SQL 以及它的执行计划:

SELECT * FROM t WHERE d = 'aaa'

******** 1. row ********

           id: 1

  select_type: SIMPLE

        table: t

   partitions: p0000,p2019,p2020,p9999

         type: ALL

possible_keys: NULL

          key: NULL

      key_len: NULL

          ref: NULL

         rows: 2

     filtered: 50.00

        Extra: Using where

通过执行计划我们可以看到:上述 SQL 需要访问 4 个分区,假设每个分区需要 3 次 I/O,则这条 SQL 总共要 12 次 I/O。但是,如果使用普通表,记录数再多,也就 4 次的 I/O 的时间。

所以,分区表设计时,务必明白你的查询条件都带有分区字段,否则会扫描所有分区的数据或索引。所以,分区表设计不解决性能问题,更多的是解决数据迁移和备份的问题。

而为了让你更好理解分区表的使用,我们继续看一个真实业务的分区表设计。

分区表在业务上的设计

以电商中的订单表 Orders 为例,如果在类似淘宝的海量互联网业务中,Orders 表的数据量会非常巨大,假设一天产生 5000 万的订单,那么一年表 Orders 就有近 180 亿的记录。

所以对于订单表,在数据库中通常只保存最近一年甚至更短时间的数据,而历史订单数据会入历史库。除非存在 1 年以上退款的订单,大部分订单一旦完成,这些数据从业务角度就没用了。

那么如果你想方便管理订单表中的数据,可以对表 Orders 按年创建分区表,如:

CREATE TABLE `orders` (

  `o_orderkey` int NOT NULL,

  `O_CUSTKEY` int NOT NULL,

  `O_ORDERSTATUS` char(1) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL,

  `O_TOTALPRICE` decimal(15,2) NOT NULL,

  `O_ORDERDATE` date NOT NULL,

  `O_ORDERPRIORITY` char(15) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL,

  `O_CLERK` char(15) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL,

  `O_SHIPPRIORITY` int NOT NULL,

  `O_COMMENT` varchar(79) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL,

  PRIMARY KEY (`o_orderkey`,`O_ORDERDATE`),

  KEY `orders_fk1` (`O_CUSTKEY`),

  KEY `idx_orderdate` (`O_ORDERDATE`)

)

PARTITION BY RANGE  COLUMNS(o_orderdate)

(

  PARTITION p0000 VALUES LESS THAN ('1992-01-01') ENGINE = InnoDB,

  PARTITION p1992 VALUES LESS THAN ('1993-01-01') ENGINE = InnoDB,

  PARTITION p1993 VALUES LESS THAN ('1994-01-01') ENGINE = InnoDB,

  PARTITION p1994 VALUES LESS THAN ('1995-01-01') ENGINE = InnoDB,

  PARTITION p1995 VALUES LESS THAN ('1996-01-01') ENGINE = InnoDB,

  PARTITION p1996 VALUES LESS THAN ('1997-01-01') ENGINE = InnoDB,

  PARTITION p1997 VALUES LESS THAN ('1998-01-01') ENGINE = InnoDB,

  PARTITION p1998 VALUES LESS THAN ('1999-01-01') ENGINE = InnoDB,

  PARTITION p9999 VALUES LESS THAN (MAXVALUE)

)

你可以看到,这时 Orders 表的主键修改为了(o_orderkey,O_ORDERDATE),数据按照年进行分区存储。那么如果要删除 1 年前的数据,比如删除 1998 年的数据,之前需要使用下面的 SQL,比如:

DELETE FROM Orders 

WHERE o_orderdate >= '1998-01-01' 

  AND o_orderdate < '1999-01-01'

可这条 SQL 的执行相当慢,产生大量二进制日志,在生产系统上,也会导致数据库主从延迟的问题。而使用分区表的话,对于数据的管理就容易多了,你直接使用清空分区的命令就行:

ALTER TABLE orders_par 

TRUNCATE PARTITION p1998

上述 SQL 执行速度非常快,因为实际执行过程是把分区文件删除和重建。另外产生的日志也只有一条 DDL 日志,也不会导致主从复制延迟问题。

# at 425

#210328 12:10:12 server id 8888  end_log_pos 549        Query   thread_id=9     exec_time=0     error_code=0    Xid = 10

SET TIMESTAMP=1619583012/*!*/;

/*!80013 SET @@session.sql_require_primary_key=0*//*!*/;

ALTER TABLE orders TRUNCATE PARTITION p1998

/*!*/;

总结

这一讲我们学习了分区表的原理、使用,最后通过线上电商表 Orders 展示了如何用好分区表。当然真正的电商业务会做分布式架构,从而用到分表技术,这些内容我们在后面会详细讲。

我强调一下今天的重点:

我想再次提醒你:分区表并不是用于提升性能的一种手段,它是方便管理数据的一种方式